
Arturs Lontons

Course Content Creator

Improving Your Resource Low-
Level Discovery Workflows
with Bulk Data Collection

Low-level discovery

3

Low-level discovery

Low-level discovery is a core Zabbix feature
used to automate creation and
management of resources

Automatically discover resources such as file
systems, services, network interfaces,
containers and more

Automatically react to resources being added or
removed

Use filters to discover only the required
resources

Instantly apply changes to all of the discovered
resources

4

Low-level discovery prototypes

Low-level discovery rules create items,
triggers, graphs and hosts from prototypes

Prototypes behave like blueprints for
discovered entities

Low-level discovery macros – {#MACRO}, are
used in resource prototypes and are populated
with the attributes of the discovered resources

5

LLD rule

Traffic in on {#IFNAME}

High traffic in on {#IFNAME}

Traffic graph on {#IFNAME}

Traffic out on {#IFNAME}

High traffic out on {#IFNAME}

Network interface
eth0

Traffic in on eth0

High traffic in on eth0

Traffic graph on eth0

Traffic out on eth0

High traffic out on eth0

Traffic in on eth1

High traffic in on eth1

Traffic graph on eth1

Traffic out on eth1

High traffic out on eth1
Network interface

eth1

6

Low-level discovery data

[
{ "{#FSNAME}":"/", "{#FSTYPE}":"rootfs" },
{ "{#FSNAME}":"/sys", "{#FSTYPE}":"sysfs" },
{ "{#FSNAME}":"/proc", "{#FSTYPE}":"proc" },
{ "{#FSNAME}":"/dev", "{#FSTYPE}":"devtmpfs" },
{ "{#FSNAME}":"/dev/pts", "{#FSTYPE}":"devpts" },
{ "{#FSNAME}":"/lib/init/rw", "{#FSTYPE}":"tmpfs" },
{ "{#FSNAME}":"/dev/shm", "{#FSTYPE}":"tmpfs" },
{ "{#FSNAME}":"/home", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/tmp", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/usr", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/var", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"/sys/fs/fuse/connections", "{#FSTYPE}":"fusectl" }
]

Under the hood low-level discovery uses
JSON data with "macro":"value" pairs

Any item type can be used for low-level
discovery

For some item types, Zabbix automatically
formats the collected data in LLD format

For other item types, the data must be
transformed manually – either before Zabbix
receives it or once the data is received by using
preprocessing and LLD macro assignments via
JSONPath

Dependent items

8

Dependent items

Dependent items utilize another item – master item as the
source of data

Dependent item values are extract from the master item via
preprocessing

An unlimited number of dependent items can be create d

Dependent items don’t have an update interval – they are
updated together with the master item

9

Dependent items

Dependent items utilize preprocessing to extract values
from the master item

At least one preprocessing step is required

If no preprocessing step is defined, the dependant item will copy
the values collected by the master item

10

Dependent items

{
"asserts": {
"msg": 0,
"regular": 0,
"rollovers": 0,
"tripwire": 0,
"user": 773,
"warning": 0

},
"batchedDeletes": {
"batches": 1,
"docs": 1,
"refetchesDueToYield": 0,
"stagedSizeBytes": 275,
"timeInBatchMillis": 0

},
"changeStreamPreImages": {
"purgingJob": {
"bytesDeleted": 0,
"docsDeleted": 0,
"maxStartWallTimeMillis": 0,
"scannedCollections": 0,
"scannedInternalCollections": 0,
"timeElapsedMillis": 0,
"totalPass": 0

}
...
},
"uri": "statistics:"

}
}

Master item Dependent items:

11

Dependent items - notes

Using dependent items can reduce data collection performance
overhead

The data is collected via a single request and processed by
Zabbix

Any type of preprocessing can be used to transform data

Most commonly JSONPath/Xpath/Regex preprocessing is used

Low-level discovery rules can also be of dependent item type

Dependent low-level discovery

13

Dependent low-level discovery

A discovery rule can also be of dependent item type

Master item collects all of the discovery related data

Low-level discovery rule is executed every time the master item collects values

14

Dependent low-level discovery

The retrieved JSON contains the low-level discovery information and values
used by the items.

LLD macros can be assigned in the discovery rule

JavaScript preprocessing can also be used to retrieve and populate LLD macro values

[
{
"fsname": "/",
"fstype": "overlay",
"bytes": {
"total": 85829070848,
"free": 49161748480,
"used": 36667322368,
"pfree": 57.27866793182881,
"pused": 42.72133206817119

},
"inodes": {
"total": 41941440,
"free": 41664647,
"used": 276793,
"pfree": 99.34004888721036,
"pused": 0.6599511127896419

},
{
"fsname": "/sys",
"fstype": "sysfs",
"bytes": {
"total": 0,
"free": 0,
"used": 0,
"pfree": 0,
"pused": 0

},
...

15

Dependent low-level discovery

The item prototypes for dependent LLD also utilize dependent item type and
use the same master item as the dependent LLD

JSONPath preprocessing is used to extract values from the master item

The low-level discovery macro used in JSONPath will be resolved as the element name
for each discovered resource

16

Dependent low-level discovery

The item prototypes for dependent LLD also utilize dependent item type and
use the same master item as the dependent LLD

JSONPath preprocessing is used to extract values from the master item

The low-level discovery macro used in JSONPath will be resolved as the element name
for each discovered resource

17

Dependent SNMP low-level
discovery

Dependent LLD is also the recommended way of performing discovery of
SNMP resources

Create a walk[oid1,oid2,oid3, ...] master item

Create an LLD rule with SNMP walk to JSON preprocessing step

Assign LLD macros in the preprocessing

Create dependent item prototypes with SNMP walk value preprocessing step

Apply Discard uchnanged with heartbeat preprocessing to reduce the frequency of LLD
execution (Unique behavior for SNMP discovery)

18

First, create walk[oid1,oid2,oid3, ...] master item

The item will perform SNMP walk across all of the specified OIDs and
return their values

Dependent SNMP low-level
discovery

19

Create a dependent LLD rule with SNMP walk to JSON
preprocessing

Assign LLD macro values to OIDs

Dependent SNMP low-level
discovery

20

Create dependent item prototypes with SNMP walk value
preprocessing

Specify the OID from which to extract the item value

Use the {#SNMPINDEX} LLD macro in preprocessing

The data is collected from the master item utilized by the LLD rule

Dependent SNMP low-level
discovery

21

Apply Discard unchaged preprocessing to prevent the LLD rule
from running every time the master item receives new values

Even though the master item receives new values (metrics), the LLD data
remains unchanged and will be dicarded

This is unique throttling behavior which works only with SNMP walk to
JSON preprocessing

Dependent SNMP low-level
discovery

22

Apply Discard unchaged preprocessing to prevent the LLD rule
from running every time the master item receives new values

Even though the master item receives new values (metrics), the LLD data
remains unchanged and will be dicarded

This is unique throttling behavior which works only with SNMP walk to
JSON preprocessing

Dependent SNMP low-level
discovery

23

Dependent SNMP low-level
discovery

.1.3.6.1.2.1.2.2.1.19.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.19.10 = Counter32: 0

.1.3.6.1.2.1.2.2.1.2.1 = STRING: "Vlan1"

.1.3.6.1.2.1.2.2.1.2.10 = STRING: "Vlan10"

.1.3.6.1.2.1.2.2.1.19.1 = Counter32: 0

.1.3.6.1.2.1.2.2.1.19.10 = Counter32: 1

.1.3.6.1.2.1.2.2.1.2.1 = STRING: "Vlan1"

.1.3.6.1.2.1.2.2.1.2.10 = STRING: "Vlan10"

Master item data #1 Master item data #2

Outbound
packets

discarded
(Value

collected by
item}

Interface
Description
({#IFDESCR}

value used in
LLD)

LLD not executed with Discard
unchanged preprocessing, because
the LLD values have not changed

(even though new metrics are
present in the master item)

24

Using dependent low-level discovery rules allow collecting item values
and discover resources from the same source – the master item

Using a single master item to collect data in bulk reduces the
performance impact on the monitored endpoint

Zabbix proxies can be used to further move the preprocessing
performance overhead from Zabbix server to Zabbix proxies

Collected data can be transformed into LLD format by JavaScript
preprocessing

LLD macro values can be extracted from JSON data by using the LLD
macros section of the LLD rule

Final notes

Thank you!

	Default Section
	Slide 1: Improving Your Resource Low-Level Discovery Workflows with Bulk Data Collection
	Slide 2: Low-level discovery
	Slide 3: Low-level discovery
	Slide 4: Low-level discovery prototypes
	Slide 5
	Slide 6: Low-level discovery data
	Slide 7: Dependent items
	Slide 8: Dependent items
	Slide 9: Dependent items
	Slide 10: Dependent items
	Slide 11: Dependent items - notes
	Slide 12: Dependent low-level discovery
	Slide 13: Dependent low-level discovery
	Slide 14: Dependent low-level discovery
	Slide 15: Dependent low-level discovery
	Slide 16: Dependent low-level discovery
	Slide 17: Dependent SNMP low-level discovery
	Slide 18: Dependent SNMP low-level discovery
	Slide 19: Dependent SNMP low-level discovery
	Slide 20: Dependent SNMP low-level discovery
	Slide 21: Dependent SNMP low-level discovery
	Slide 22: Dependent SNMP low-level discovery
	Slide 23: Dependent SNMP low-level discovery
	Slide 24: Final notes
	Slide 25: Thank you!

